Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study.

نویسندگان

  • Silke Sachse
  • C Giovanni Galizia
چکیده

The primary olfactory brain center, the antennal lobe (AL) in insects or the olfactory bulb in vertebrates, is a notable example of a neural network for sensory processing. While physiological properties of the input, the olfactory receptor neurons, have become clearer, the operation of the network itself remains cryptic. Therefore we measured spatio-temporal odor-response patterns in the output neurons of the olfactory glomeruli using optical imaging in the honeybee Apis mellifera. We mapped these responses to identified glomeruli, which are the structural and functional units of the AL. Each odor evoked a complex spatio-temporal activity pattern of excited and inhibited glomeruli. These properties were odor- and glomerulus-specific and were conserved across individuals. We compared the spatial pattern of excited glomeruli to previously published signals, which derived mainly from the receptor neurons, and found that they appeared more confined, showing that inhibitory connections enhance the contrast between glomeruli in the AL. To investigate the underlying mechanisms, we applied GABA and the GABA-receptor antagonist picrotoxin (PTX). The results show the presence of two separate inhibitory networks: one is GABAergic and modulates overall AL activity, the other is PTX-insensitive and glomerulus-specific. Inhibitory connections of the latter network selectively inhibit glomeruli with overlapping response profiles, in a way akin to "lateral" inhibition in other sensory systems. Selectively inhibited glomeruli need not be spatial neighbors. The net result is a globally modulated, contrast-enhanced and predictable representation of odors in the olfactory output neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time and space are complementary encoding dimensions in the moth antennal lobe.

The contribution of time to the encoding of information by the nervous system is still controversial. The olfactory system is one of the standard preparations where this issue is empirically investigated. For instance, output neurons of the antennal lobe or the olfactory bulb display odor stimulus induced temporal modulations of their firing rate at a scale of hundreds of milliseconds. The role...

متن کامل

Antennal lobe processing increases separability of odor mixture representations in the honeybee.

Local networks within the primary olfactory centers reformat odor representations from olfactory receptor neurons to second-order neurons. By studying the rules underlying mixture representation at the input to the antennal lobe (AL), the primary olfactory center of the insect brain, we recently found that mixture representation follows a strict elemental rule in honeybees: the more a component...

متن کامل

Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli.

Olfactory responses require the representation of high-dimensional olfactory stimuli within the constraints of two-dimensional neural networks. We used a computational model of the honeybee antennal lobe to test how inhibitory interactions in the antennal lobe should be organized to best reproduce the experimentally measured input-output function in this structure. Our simulations show that a f...

متن کامل

Decorrelation of Odor Representations via Spike Timing-Dependent Plasticity

The non-topographical representation of odor quality space differentiates early olfactory representations from those in other sensory systems. Decorrelation among olfactory representations with respect to physical odorant similarities has been proposed to rely upon local feed-forward inhibitory circuits in the glomerular layer that decorrelate odor representations with respect to the intrinsica...

متن کامل

Distinct spatiotemporal activity in principal neurons of the mouse olfactory bulb in anesthetized and awake states

The acquisition of olfactory information and its early processing in mammals are modulated by brain states through sniffing behavior and neural feedback. We imaged the spatiotemporal pattern of odor-evoked activity in a population of output neurons (mitral/tufted cells, MTCs) in the olfactory bulb (OB) of head-restrained mice expressing a genetically-encoded calcium indicator. The temporal dyna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 2002